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8.1 � INTRODUCTION
Cardiovascular diseases (CVDs), such as Coronary, Cerebrovascular, 
Peripheral, Ischemic, Hypertensive, Congenital, Rheumatic, and Non-
rheumatic valvular, are considered as the main reason of fatality with 
almost 17.9 million deaths each year. It accounts for almost 31% of all 
deaths worldwide [1]. In the United States, affecting most ethnic groups, 
it is one of the main diseases present [2]. The electrocardiogram (ECG) is 
used as a major tool in diagnosing CVDs. Automated analysis of standard 
ECG gained paramount importance in order to save time and effort, as the 
world transitioned from analog to digital. ECG is usually performed when 
a patient experiences acute chest pain following which the treatment can 
be immediately determined [3].

However, the problem is that many physicians solely rely on elemental 
diagnostic analysis of ECG results whereas they always require the under-
standing and confirmation by a trained technician [4].

On the other hand, Deep Learning (DL) has achieved remarkable suc-
cess in medical diagnosis tasks [5,6] and has the potential to improve 
health care and clinical practice on a large scale [7]. Though an expert’s 
confirmation is probably required in many clinical settings, DL can help 
an expert in the clinical environment. Studies show that Supervised 
Learning can perform better than a human specialist in medical testing 
and diagnosis [8,9]. However, efficient training of Deep Neural Networks 
(DNNs) requires a big dataset which, for medical applications, is very 
scarce—mainly due to confidentiality issues [10].

CONTENTS
8.1	 Introduction	 130
8.2	 Related Work	 132
8.3	 Motivation	 134
8.4	 Dataset Used	 134

8.4.1	 Pre-Processing	 135
8.5	 Methodology	 136

8.5.1	 VGG16: A Brief Overview	 137
8.5.2	 Moth-Flame Optimization	 137

8.6	 Experimental Results and Discussion	 142
8.7	 Conclusion	 148
References	 148



MFO-based Feature Selection for CVD    ◾    131

The ECG is the most common evaluation technique of the heart pro-
viding a proper evaluation of the patient’s heart activity – including the 
cardiac rhythm, repolarization, arrhythmias, coronary syndromes, and 
effects of drugs. Thus, an automatic DL approach interpreting ECGs can 
be useful for better diagnosis of the patients.

ECG analysis has been done using DL in recent works [11], in which the 
authors trained DNNs on a fairly large-sized dataset consisting of 91,232 
single-lead ECGs achieving a ROC area of 0.97. In Ref. [12], the authors 
used DNN to train the large publicly available PhysioNet Challenge data-
set and achieved better performance when compared to that of cardiolo-
gists. Out of a total of 75 teams that entered the challenge, 4 teams won 
with an F1 score of 0.83.

The standard short-duration 12-lead ECGs are often performed in 
healthcare units, often with no specialists to analyze the ECG signals. 
Also, doctors during their training may lack a complete understanding 
of these tracings [13]. The automatic yet precise interpretation of ECG is 
the need of the hour with CVDs increasing at an alarming rate—owing to 
the unhealthy lifestyles that most people are incorporating nowadays [14].  
In countries where maximum deaths are related to CVDs and people 
often do not have access to trained cardiologists, this can be a successful 
alternative.

The benefits of DNN usage for ECG evaluation are still largely unex-
ploited due to the shortage of medically accurate digital ECG databases 
[15]. According to the authors of Ref. [16], there are very few databases 
with a large number of ECG tracings and their standardized explanation, 
hence limiting their effectiveness as training datasets for the DL methods 
which follow the supervised learning approach. Despite this disadvantage, 
the results that DL models produce are better than the analysis of most 
physicians.

In light of the above facts, under this procedure, we have initially applied 
a pre-trained Deep Convolutional Neural Network (DCNN) model—
VGG16 for arrhythmia classification. Though this gives decent outcomes, 
the usage of DL models involves large computation cost and requires huge 
training data so as to generalize over new samples. However, we have used 
Transfer Learning (TL) in order to extract main features from the data for 
further processing. But the sizable features so produced may have some 
redundant and unessential features. Therefore, these obtained features need 
to be optimized by some means to reduce the computation time and storage 
requirement apart from the reduction of the redundancy of the features.  
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For dimension reduction of the feature vector, we have applied a swarm 
intelligence-based metaheuristic algorithm, the Moth-Flame Optimization 
(MFO) algorithm, which was originally proposed in Ref. [17]. This opti-
mal subset of the feature set produced by tuning the parameters of MFO 
was then fed into a Support Vector Machine (SVM) classifier [18] to detect 
arrhythmia accurately.

Research highlights of this work are listed below:

	 1.	Combining a DCNN model with a nature-inspired metaheuristic 
feature selection algorithm to classify ECG signals for identification 
of the CVDs—hence creating a two-staged approach architecture.

	 2.	To manage the overfitting problem, we have used TL. The initial 
weights are generalized to get the full benefit of TL. Another use of 
this is to reduce the training time. Training a large model like VGG16 
from scratch would have taken a lot of time.

	 3.	For dimension reduction of the feature set that we got from the origi-
nal DCNN model, a popular metaheuristic, called the MFO algo-
rithm, has been used.

	 4.	The proposed model gained state-of-the-art results when evaluated 
on the publicly available MIT-BIH Arrhythmia database. The opti-
mized feature subset results in better classification accuracy than the 
non-optimized feature set produced by VGG16.

The remaining portion of this chapter has been divided into the follow-
ing sections: Section 8.2 contains the related work in this field of ECG 
classification and diagnosis using DL methods. Section 8.3 mentions the 
motivation behind this work. Section 8.4 provides information about the 
dataset we have used in this work. Section 8.5 explains the pre-processing 
we have applied in the MIT-BIH dataset to obtain the image data. Section 
8.6 contains the methodology and Section 8.7 explains the results we have 
obtained and also compares our work with some state-of-the-art works 
in this area. Section 8.8 concludes this chapter by discussing some future 
prospects to work on.

8.2 � RELATED WORK
Here, we briefly discuss some past works related to the said research topic. 
In Ref. [19], the authors proposed an algorithm to classify noisy ECG 
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signals from the MIT-BIH Arrhythmia database [20] using a one-dimen-
sional CNN. The authors had applied two approaches. In one approach, a 
five-class classification from the 1D ECG data is obtained using 1D CNN,  
achieving about 97.4% accuracy. In another approach, they converted the 
1D ECG data into 2D gray-scale image data and then used an eight-class 
classification on those images using a 2D CNN, achieving a classification 
accuracy of 99.02%.

In Ref. [21], the authors used Marine Predators Algorithm (MPA) with 
CNN, naming the method MPA-CNN, to classify four different types of 
arrhythmia. They worked on three separate datasets—the MIT-BIH, the 
European ST-T dataset (EDB) [22], and the St Petersburg INCART [23]. 
They obtained precisions of 99.31%, 99.76%, and 99.47% on the datasets, 
respectively.

The authors of the work reported in Ref. [24] proposed hybrid feature 
extraction of T-wave for arrhythmia classification on the MIT-BIH data-
base. They used the windowing technique, feature extraction, followed by 
classification for the purpose, and obtained an accuracy of 98.3%, specific-
ity of 98.0%, and sensitivity of 98.6%. The authors of Ref. [25] used cross-
correlation feature extraction. A Least-Square SVM classifier was used 
for a three-class classification on the MIT-BIH database. The accuracy 
achieved was about 96%.

In Ref. [26], the authors proposed a 1D DNN model to correctly clas-
sify three different arrhythmias on the MIT-BIH database, achieving a 
97.44% accuracy. In Ref. [27], the authors presented a classification sys-
tem designed for detecting Ventricular Ectopic Beats. Accuracy–sensi-
tivity performances of the system were 98.3%–84.6% and 97.4%–63.5%, 
respectively.

The authors of the work [28] used a DCNN model to classify five 
different arrhythmias and Myocardial Infarction (MI) from the MIT-
BIH and PTB Diagnostics datasets. They obtained 93.4% and 95.9% 
accuracy on each dataset. The authors of Ref. [29] used Particle Swarm 
Optimization (PSO) to enhance the classification results of the SVM 
classifier using data from the MIT-BIH dataset. PSO gave an 89.72% 
accuracy.

The authors of Ref. [30] used wavelet-transformation on waveforms 
from 18 files of the MIT-BIH database. They generated the feature set for 
classification and obtained an accuracy of 95.16%–96.82%. In the work 
[31], the authors used a deep 2D CNN model for arrhythmia classification, 
achieving 99.05% accuracy and 97.85% sensitivity.
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Recently, many Swarm intelligence optimization techniques (inspired 
by animal groups and insect colonies, mimicking their behavior) have been 
proposed and tested for general and medical diagnosis [32]. Robustness, 
flexibility, and the ability to quickly find the optimal solution to a particu-
lar problem are some of the usefulness of these metaheuristic algorithms 
[33]. Genetic Algorithm [34], Ant Colony Optimization [35], PSO [36], 
Artificial Bee colony optimization [37], and Cuckoo Search [38] are a few 
of them. Some of the applications of swarm intelligence-based optimiza-
tion algorithms in the medical field deal with cancer screening [39,32], the 
fusion of MRI and CT scans [40], endocrinology [41], tumor classification 
[42], and so on.

8.3 � MOTIVATION
MIT-BIH dataset has been used in this study because of its large amount 
of data as a DL model needs to properly train in order to correctly pre-
dict ECG classes. We have chosen a DL-based model for initial feature 
extraction as it has been seen that DL models perform better than machine 
learning-based models as the former can learn complex patterns automati-
cally from the raw inputs. The choice of the MFO algorithm as the chosen 
metaheuristic algorithm is because it is a population-based algorithm with 
a local search strategy. This helps to find out the best possible solution 
using global and local exploitation [43]. MFO has few parameters, is flex-
ible and easy to implement, and has faster convergence. Hence, it is being 
used to solve many problems such as parameter estimation [44], classifica-
tions [18], medical diagnoses [45], and image processing [46]. Other appli-
cations of MFO have been elucidated in Ref. [47].

8.4 � DATASET USED
We have used the Massachusetts Institute of Technology-Beth Israel 
Hospital (MIT-BIH) Arrhythmia Database [20] that has 48 properly anno-
tated records (each with a duration of 30 minutes and sampled at 360 sam-
ples per second with 11-bit resolution over a 10 mV voltage range). This 
dataset gives a proper view of all important waves present in an ECG sig-
nal, including P-waves, Q-waves, R-waves, S-waves, and T-waves. There 
are almost 15 labels, including 1 normal class. Among these labels, some 
are unclassified and some are normally not used in Arrhythmia detection. 
We have chosen to work with the MIT-BIH database because it provides 
a properly annotated collection of normal and several different types of 
arrhythmia to train our classifier.
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For this work, we have collected the required arrhythmia recordings 
from the database which has more than 110,000 ECG beats with almost 16 
different types of arrhythmia and 1 normal. As we have already discussed 
in Section 8.2, past authors have done arrhythmia classification tasks 
with different classes. After surveying previous works, we have decided 
to move with an eight-class classification as this contains normal and the 
most common Arrhythmia classes. From the MIT-BIH database, we have 
considered eight different ECG beats. These are normal beats (NOR) and 
seven different types of ECG arrhythmias. These seven different types of 
Arrhythmia are as follows: Premature Ventricular Contraction (PVC), 
Paced Beat (PAB), Right and Left Bundle Branch Block Beat (RBB and 
LBB), Atrial Premature Contraction (APC), Ventricular Flutter Wave 
(VFW), and Ventricular Escape Beat (VEB). We have ignored some less 
important beats in ECG arrhythmia classification studies like non-con-
ducted P-wave and unclassifiable beats.

8.4.1 � Pre-Processing

ECG signal is a time-based signal. To use these ECG 1D data in a 2D CNN 
model, we need to convert these into image data. We have followed a pre-
processing strategy for this conversion. We plotted every ECG signal as an 
individual 128 × 128 gray-scale image and transformed them into corre-
sponding ECG images. The MIT-BIH dataset is sampled with a frequency 
of 360 Hz, and the label is specified during the heartbeat’s Q peak. So, each 
signal is segmented based on the Q-wave peak time and converted into 
gray-scale images after plotting. Thus, each ECG beat’s Q-wave peak is 
kept at the center and the first and last 20 sampled values from the previ-
ous and afterward Q-wave peak signals are excluded as the duration of the 
Q-wave peak is 0.03 s or less. So, in the time domain, we can define the 
range of a single ECG beat as follows;

	 ( ) ( )( ) ( )− + ≤ ≤ + −( 1) 20 ( ) ( 1) 20peak peakT Q n T n Q n

Following the above formula, we have excluded the first and last ECG 
beats. Figure 8.1 shows some images obtained after pre-processing. As a 
result, we have obtained a total of 1,07,620 images belonging to eight dif-
ferent classes. Then, we have divided this dataset into training, validation, 
and testing set in a ratio of 70%, 15%, and 15%. The number of images in 
every class is presented in Table 8.1.
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8.5 � METHODOLOGY
Before using the MFO algorithm, we have first extracted the features 
from the images. We have employed the VGG16 model pre-trained on the 
ImageNet dataset as our feature extractor model. After freezing the top 
layers up to block 5, we have fine-tuned the model on our ECG dataset. 
The pre-trained VGG16 model accepts three channel input images. So, we 

FIGURE 8.1  ECG signal Images formed after pre-processing. A sample from all 
eight classes is shown here: (a) APC, (b) LBB, (c) normal beat (NOR), (d) RBB, (e) 
PAB, (f) PVC, (g) VFW, and (h) VEB.

TABLE 8.1  Division of the Dataset—A Total of Eight Classes—into Train Set, Test Set, 
and Validation Set

Class

No. of Samples in 

Training Data Validation Data Testing Data

APC 1,760 382 402
LBB 5,630 1,204 1,238
Normal 52,509 11,250 11,257
PAB 4,937 1,036 1,051
PVC 4,983 1,097 1,050
RBB 5,095 1,088 1,073
VEB 78 16 12
VFW 342 70 60
Total 75,334 16,143 16,143
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have converted the gray-scale images obtained after pre-processing into 
three-channel (RBG) images. The block diagram depicting the flow of our 
proposed methodology can be seen in Figure 8.2.

8.5.1 � VGG16: A Brief Overview

In the first stage of the procedure, we have applied VGG16 for feature 
extraction on our dataset. The initial layers of this model are initialized 
with ImageNet weights [48], whereas the final layers are made trainable 
to modify their weights according to the images in our dataset. VGG [49], 
proposed in 2014, has its main aspect in its small kernel size of (3 × 3). This 
feature enables VGG to apprehend provincial features, thus improving the 
performance. Figure 8.3 shows the VGG16 model we have used in this 
work after inserting a few supplementary layers for achieving better results 
fine-tuned especially for our purpose.

8.5.2 � Moth-Flame Optimization

MFO is a nature-inspired metaheuristic algorithm simulating the move-
ment of moths, and this movement is commonly known as the Transverse 
Orientation. While traveling at night, a moth maintains a fixed angle with 
the Moon (a bright source of light) as a result of which it stays in a straight 
line. But in most cases, the moths keep on spiraling to the source until they 
get exhausted. This is because these moths are fooled by the presence of 
artificial lights and they try to follow a similar movement method around 
them. Being extremely close to the Moon, these lights resulted in a spiral 
path for the moths. Figure 8.4 shows diagrammatically the spiral motion.

FIGURE 8.2  Block diagram representing the proposed methodology.
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FIGURE 8.3  VGG16 model used for feature extraction from ECG records.
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The MFO algorithm can solve many complex optimization problems. 
For this, the moths and the artificial light sources (flames) are assumed 
to be the solutions to the problem, and the position of the moth in space 
becomes the variable in any number of dimensions. We represent the moth 
population as a matrix M:
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where n is the total number of moths and d the number of dimensions in 
which the moth travels.

A problem-specific fitness function is defined and an array OM stores 
the corresponding fitness values. As there are n number of moths, there 
are n fitness values in the array, as shown below:
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FIGURE 8.4  Movement of moths around an artificial light following the trans-
verse orientation ultimately leading to a spiraling motion.
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Another matrix F, with dimensions same as that of F, stores the best-
obtained solutions so far as flames, and a matrix OF stores the fitness val-
ues of the individual flames as shown in the below two equations:

	 =





















1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

F

F F F
F F F

F m F

d

d

n n n d

� �
� �

� � � � �
� �

	 (8.3)

	 =





















OF

OF
OF

OF

1

2

n



	 (8.4)

The MFO algorithm is defined as follows:

	 ( )=MFO , ,I P T 	 (8.5)

Here, the function I generates a random population of moths and their 
corresponding fitness values:

	 { }∅ →: ,OMI M 	 (8.6)

The function P returns the updated positions of the moths:

	 →:P M M 	 (8.7)

The function T returns true if the stopping condition is satisfied:

	 { }→: True,FalseT M 	 (8.8)

S is the spiral function (usually a logarithmic spiral) using which the posi-
tion of a moth with respect to a flame is updated and stored in M.

	 ( ) ( )= = ⋅ ⋅ π +, cos 2M S M F D e t Fi i j i
bt

j 	 (8.9)

where Di  indicates the distance of the thi  moth for the thj  flame, b is a con-
stant, and t is a random number in [−1,1].
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FIGURE 8.5  Flowchart representing the feature optimization using MFO.
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The number of flames adaptively decreases throughout iterations as 
shown:

	 = − ∗ −



Flamenumber Round   1N l N

T
 	 (8.10)

where l, N, and T denote current iteration, maximum number of flames, 
and maximum number of iterations, respectively.

This continues till T  returns true, and in the end, the best moth is 
returned as the best-obtained approximation of the optimum.

Figure 8.5 shows the flowchart depicting the MFO algorithm.

8.6 � EXPERIMENTAL RESULTS AND DISCUSSION
In this study, a bi-stage model for the classification of ECG beats has been 
designed. For its evaluation, we have considered the MIT-BIH database. In 
the current experiment, 70% of the total database is used as the training 
set. Remaining 30% is equally divided to represent the validation and test-
ing set, respectively. The gray-scale sample images are firstly transformed 
into RGB images (since VGG accepts only RGB images) of a dimension of 
128 × 128 × 3 before feature extraction by VGG16. Training is done over 20 
epochs with a batch size of 64. A 0.2 Dropout is employed to prevent over-
fitting. Also, TL helps reduce the training time substantially.

In the present experiment, the feature set produced from VGG16 is used 
in the next stage of the framework. From Figure 8.6, it can be observed that 

FIGURE 8.6  The train and validation accuracy curves with respect to the num-
ber of epochs for the VGG-16 classifier.
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the VGG16 model has a good performance and achieves a 97.36% accuracy 
on the test set. Figures 8.7, and 8.8 represent the loss curves and confu-
sion matrix, respectively. In the next stage of our framework, the MFO 
algorithm has been used to optimize the feature vector achieved from the 
VGG16 model. The mechanism eliminates the irrelevant features and thus 
helps in reducing the dimension of the feature set without compromis-
ing the classification performance. The results of the VGG16 model before 
applying the MFO algorithm are given in Table 8.2.

From the VGG16 model, we have extracted 128 features from the pen-
ultimate layer of the model. Convolutional and Pooling blocks extract the 
generic features, while the Dense layer in the model distinguishes those 
special features of the images which makes the classification tasks easier. 
So, we have used the features of the second last layer for optimization as 
they contain most of the information related to the dataset.  

It has been observed that the MFO algorithm can reduce the feature 
set’s dimension from 128 to 58, i.e., almost a 55% reduction without any 
significant loss in performance. Instead, the performance of the overall 
classification task improves marginally by 0.5%. The results are detailed 
in Table 8.3.

After applying the MFO-based feature selection approach, the confu-
sion matrix is shown in Figure 8.9. It is clear from this figure that after 
optimizing the feature set, the performance has improved.

FIGURE 8.7  The train and validation loss curves with respect to the number of 
epochs for the VGG-16 classifier.



144    ◾    Handbook of Moth-Flame Optimization Algorithm

FIGURE 8.8  Confusion matrix of the VGG-16 classifier model.

TABLE 8.2  Performance of the Pre-Trained VGG16 Classifier for Extraction of the 
Feature Set

Model Accuracy (%) Precision Recall F1 Score

VGG16 97.36 0.97 0.97 0.97

TABLE 8.3  Classification Performance of ECG Samples Before and After Application of 
the MFO Algorithm

Method
Accuracy 

(%) Dimension Precision Recall
F1 

Score

Before feature selection 97.36 128 0.97 0.97 0.97
After applying MFO-based 
feature selection approach

97.86 58 0.98 0.98 0.98
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The ROC curves before and after using the MFO algorithm are given in 
Figures 8.10 and 8.11, respectively. 

We have used 20 moths for optimization, the fitness and dimension of 
each moth are given in Table 8.4. This represents the dimensions of each 
moth in the population after the final iteration along with the classifica-
tion accuracy.

Table 8.3 justifies that the proposed method is assuring with respect 
to performance and efficiency. We have tried to provide a comparative 
study with the other existing approaches evaluated on the same data-
set in Table 8.5. In Ref. [50], the authors claim a classification accuracy 
of 98.71% on eight classes with a test set of size 4,900. First, they have 
used Independent Component Analysis (ICA) to separate independent 
sources from mixed ECG signals components. After that, they used neural 

FIGURE 8.9  Confusion matrix after applying MFO algorithm and SVM classifier.
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FIGURE 8.10  ROC curve of VGG-16 model.

FIGURE 8.11  ROC curve after Moth-Flame Optimization.
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networks to classify the ECG beats. The dataset used in Ref. [51] is a small 
subset of the original dataset MIT-BIH. They had selected two samples at 
random from each record corresponding to the eight classes which pro-
duced a dataset of size 9,800. A similar kind of random sub-sampling is 
used by Yu et al. [50] and Wang et al. [52]. The size of the mentioned data-
sets in these said papers [50,52] is <10% of what we have considered in 
the present study. Therefore the classification accuracies provided in these 
papers [50,52] may not act as benchmarking results rather motivate us to 
achieve comparable results.

Table 8.5 shows that the proposed method in this work is comparable 
with past works in ECG classification and produces satisfactory results.

TABLE 8.4  Fitness and Feature Dimensions of the Population After the Final Iteration

Moth No. Accuracy (%) Dimension Moth No. Accuracy (%) Dimension

1 97.86 58 11 97.83 76
2 97.86 65 12 97.83 67
3 97.85 71 13 97.83 79
4 97.85 71 14 97.82 67
5 97.84 87 15 97.82 80
6 97.84 72 16 97.82 74
7 97.84 65 17 97.82 85
8 97.84 63 18 97.82 57
9 97.83 70 19 97.81 72
10 97.83 72 20 97.81 67

TABLE 8.5  A Comparison between the Proposed Approach and Other Existing 
Approaches 

Work Ref. Method Used

No. of Data 
Samples in 
the Test Set

Classification 
Accuracy 

(in %)

 Yu et al. 
[51]

Integration of ICA and classification using neural 
networks

4,900 98.71

Yu et 
al.[50]

Novel independent components arrangement 
approach for feature extraction and classification 
using SVM

4,900 98.70

Wang et 
al. [52] 

They used PCA and LDA for ECG feature set 
minimization. Then, a probabilistic neural network 
was used to classify the reduced feature set

4,900 99.71

Proposed 
Method

A two-staged network involves optimizing the 
features of ECG scans using MFO and classifying it 
using SVM

16,143 97.86
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8.7 � CONCLUSION
This work proposes a bi-stage framework for arrhythmia classification 
using ECG signals. In the first level, pixel-level features are extracted from 
the 2D images (constructed from the 1D ECG signals) using the VGG16 
model. After this, to optimize this feature set, we have applied a meta-
heuristic MFO algorithm on it. The obtained performance shows that this 
method successfully reduces the size of the feature set and also improves 
the classification results. This method can be hence used as an aid in 
arrhythmia diagnosis in humans. As future work, this framework can 
be evaluated on other domains to measure its robustness. Again, in the 
future, an ensemble of different DCNN models or the stacking of different 
feature sets can be tried out to have better recognition accuracy. Besides, 
the MFO algorithm can be modified and/or blended with other optimi-
zation algorithms for better optimization of the feature set produced by 
some classification models at the initial stage.

REFERENCES
	 1.	 https://www.who.int/health-topics/cardiovascular-diseases/.
	 2.	 Heron, M., Deaths: Leading causes for 2017. Nat. Vital Stat. Rep., 68(6), 77 

(2019).
	 3.	 American Heart Association, Electrocardiogram (ECG or EKG) (2015). 

https://www.heart.org/en/health-topics/heart-attack/diagnosing-a-heart- 
attack/electrocardiogram-ecg-or-ekg.

	 4.	 Kligfield, P., The centennial of the Einthoven electrocardiogram. J. 
Electrocardiol., 35(Suppl), 123–129 (2002).

	 5.	 Bakator, M., & Radosav, D., Deep learning, and medical diagnosis: A review 
of literature. Multimodal Technol. Interact., 2, 47 (2018). doi: 10.3390/
mti2030047.

	 6.	 Stead, W.W., Clinical implications and challenges of artificial intelligence 
and deep learning. JAMA, 320, 1107–1108 (2018).

	 7.	 Naylor, C., On the prospects for a (deep) learning health care system. JAMA, 
320, 1099–1100 (2018).

	 8.	 Bejnordi, B. E. et al., Diagnostic assessment of deep learning algorithms for 
detection of lymph node metastases in women with breast cancer. JAMA, 
318, 2199 (2017).

	 9.	 De Fauw, J. et al., Clinically applicable deep learning for diagnosis and refer-
ral in retinal disease. Nat. Med., 24, 1342–1350 (2018).

	 10.	 Beck, E. J., Gill, W. & De Lay, P. R., Protecting the confidentiality and secu-
rity of personal health information in low- and middle-income countries in 
the era of SDGs and Big Data. Glob. Health Action, 9, 32089 (2016).

	 11.	 Hannun, A. Y. et al., Cardiologist-level arrhythmia detection and classifica-
tion in ambulatory electrocardiograms using a deep neural network. Nat. 
Med., 25, 65–69 (2019).

https://www.who.int
https://www.heart.org
https://www.heart.org
https://doi.org/10.3390/mti2030047
https://doi.org/10.3390/mti2030047


MFO-based Feature Selection for CVD    ◾    149

	 12.	 Clifford, G. D. et al., AF classification from a short single lead ECG record-
ing: The PhysioNet/Computing in Cardiology Challenge 2017. Comput. 
Cardiol., 44, 1–4 (2017).

	 13.	 Cook, D. A., Oh, S., & Pusic, M. V., Accuracy of physicians’ electrocardio-
gram interpretations: A systematic review and meta-analysis. JAMA Internet 
Med., 180(11), 1461–1471 (2020). doi: 10.1001/jamainternmed.2020.3989.

	 14.	 Robertson, S., Unhealthy lifestyle raises heart disease risk more than 
genetics. News-Medical (2019) viewed 12 July 2021, https://www.news-
medical.net/news/20190903/Unhealthy-lifestyle-raises-heart-disease-risk-
more-than-genetics.aspx.

	 15.	 Sassi, R. et al., PDF-ECG in clinical practice: a model for long-term preser-
vation of digital 12-lead ECG data. J. Electrocardiol., 50, 776–780 (2017).

	 16.	 Lyon, A., Mincholé, A., Martínez, J. P., Laguna, P. & Rodriguez, B., 
Computational techniques for ECG analysis and interpretation in light of their 
contribution to medical advances. J. R. Soc. Interface, 15, 20170821 (2018).

	 17.	 Mirjalili, S., Moth-flame optimization algorithm: A novel nature-inspired 
heuristic paradigm. Knowledge-Based Syst., 89, 228–249 (2015). doi: 
10.1016/j.knosys.2015.07.006.

	 18.	 Zawbaa, H.M., Emary, E., Parv, B., & Sharawi, M., Feature selection approach 
based on the moth-flame optimization algorithm. In 2016 IEEE Congress on 
Evolutionary Computation (CEC). IEEE, Canada, pp. 4612–4617 (2016).

	 19.	 Ullah, A., Rehman, S. U., Tu, S., Mehmood, R.M., Fawad, & Ehatisham-ul-
Haq, M., A hybrid deep CNN model for abnormal arrhythmia detection 
based on cardiac ECG signal. Sensors, 21, 951 (2021). doi: 10.3390/s21030951.

	 20.	 Moody, G. B. & Mark, R. G., The impact of the MIT-BIH arrhythmia data-
base. IEEE Eng. Med. Biol., 20(3), 45–50 (2001). doi: 10.13026/C2F305.

	 21.	 Houssein, E. H., Abdelminaam, D. S., Ibrahim, I. E., Hassaballah, M., & 
Wazery, Y. M., A hybrid heartbeats classification approach based on marine 
predators algorithm and convolution neural networks. IEEE Access, 9, 
86194–86206 (2021). doi: 10.1109/ACCESS.2021.3088783.

	 22.	 Taddei, A., Distante, G., Emdin, M., Pisani, P., Moody, G. B., Zeelenberg, 
C., & Marchesi, C., The European ST-T database: Standard for evaluating 
systems for the analysis of ST-T changes in ambulatory electrocardiography. 
Eur. Heart J., 13, 1164–1172 (1992). doi: 10.13026/C2D59Z.

	 23.	 Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P. C., Mark, R., & 
Stanley, H. E., PhysioBank, PhysioToolkit, and PhysioNet: Components of a 
new research resource for complex physiologic signals. Circulation, 101(23), 
e215–e220 (2000). doi: 10.13026/C2V88N.

	 24.	 Raghu, N., Arrhythmia detection based on hybrid features of T-wave in elec-
trocardiogram. In: J. Joshua Thomas, et al. (eds.), Deep Learning Techniques 
and Optimization Strategies in Big Data Analytics. IGI Global, pp. 1–20 
(2020). doi: 10.4018/978-1-7998-1192-3.ch001.

	 25.	 Dutta, S., Chatterjee, A., & Munshi, S., Correlation technique and least 
square support vector machine combine for frequency domain based ECG 
beat classification. Med. Eng. Phys., 32(10), 1161–1169 (2010). doi: 10.1016/j.
medengphy.2010.08.007.

https://doi.org/10.4018/978-1-7998-1192-3.ch001
https://www.newsmedical.net
https://www.newsmedical.net
https://www.newsmedical.net
https://doi.org/10.1001/jamainternmed.2020.3989
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.3390/s21030951
https://doi.org/10.13026/C2F305
https://doi.org/10.1109/ACCESS.2021.3088783
https://doi.org/10.13026/C2D59Z
https://doi.org/10.13026/C2V88N
https://doi.org/10.1016/j.medengphy.2010.08.007


150    ◾    Handbook of Moth-Flame Optimization Algorithm

	 26.	 Parveen, A., Vani, R. M, Hunagund, P.V., & Masroor, F., Deep learning: 1-D 
convolution neural network for ECG signal. Int. J. Ind. Electron. Electr. Eng. 
(IJIEEE), 8(6), 1–17 (2020).

	 27.	 Ince, T., Kiranyaz, S., & Gabbouj, M., A generic and robust system for auto-
mated patient-specific classification of ECG signals. IEEE Trans. Biomed. 
Eng., 56(5), 1415–1426 (2009). doi: 10.1109/TBME.2009.2013934.

	 28.	 Kachuee, M., Fazeli, S., & Sarrafzadeh, M., ECG heartbeat classification: 
A deep transferable representation,  2018 IEEE International Conference 
on Healthcare Informatics (ICHI), pp. 443–444 (2018). doi: 10.1109/
ICHI.2018.00092.

	 29.	 Melgani, F. & Bazi, Y., Classification of electrocardiogram signals with sup-
port vector machines and particle swarm optimization. IEEE Trans. Inf. 
Technol. Biomed., 12(5), 667–677 (2008). doi: 10.1109/TITB.2008.923147.

	 30.	 Inan, O. T., Giovangrandi, L., & Kovacs, G. T. A., Robust neural-network-
based classification of premature ventricular contractions using wavelet 
transform and timing interval features. IEEE Trans. Biomed. Eng., 53(12), 
2507–2515 (2006). DOI: 10.1109/TBME.2006.880879.

	 31.	 Jun, T., Nguyen, H.M., Kang, D., Kim, D., Kim, D., & Kim, Y., ECG 
arrhythmia classification using a 2-D convolutional neural network. ArXiv, 
abs/1804.06812 (2018).

	 32.	 Pereira, D. C., Ramos, R. P., & do Nascimento, M.Z., Segmentation and 
detection of breast cancer in mammograms combining wavelet analysis 
and genetic algorithm. Comput. Methods Programs Biomed., 114(1), 88–101 
(2014). doi: 10.1016/j.cmpb.2014.01.014.

	 33.	 Blum, C. & Li, X., Swarm intelligence in optimization. In: Swarm Intelligence. 
Springer: Berlin, Heidelberg, pp. 43–85. (2008).

	 34.	 Man, K.F., Tang, K.S.,  & Kwong, S., Genetic algorithms: Concepts and 
applications in engineering design.  IEEE Trans. Ind. Electr., 43(5), 519–534 
(1996). doi: 10.1109/41.538609.

	 35.	 Dorigo, M., Birattari, M., & Stutzle, T., Ant colony optimization. IEEE 
Comput. Intell. Mag., 1(4), 28–39 (2006). doi: 10.1109/MCI.2006.329691.

	 36.	 Kennedy, J. & Eberhart, R., Particle swarm optimization. Proceedings of 
ICNN'95- International Conference on Neural Networks, pp. 1942–1948, vol. 
4 (1995). DOI: 10.1109/ICNN.1995.488968.

	 37.	 Karaboga, D., & Basturk, B., Artificial Bee Colony (ABC) optimiza-
tion algorithm for solving constrained optimization problems. In: 
Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., & Pedrycz, W. (eds) 
Foundations of Fuzzy Logic and Soft Computing. IFSA 2007. Lecture Notes 
in Computer Science, vol. 4529. Springer: Berlin, Heidelberg (2007). doi: 
10.1007/978-3-540-72950-1_77.

	 38.	 Mohamad, A., Zain, A., Bazin, N.E.N., & Udin, A., Cuckoo search algo-
rithm for optimization problems: A literature review. Appl. Mech. Mater. 
(2013). doi: 10.4028/www.scientific.net/AMM.421.502.

	 39.	 Ghaheri, A., Shoar, S., Naderan, M., & Hoseini, S.S. The applications of 
genetic algorithms in medicine. Oman. Med. J., 30(6), 406–416 (2015). doi: 
10.5001/omj.2015.82.

https://doi.org/10.4028/www.scientific.net/AMM.421.502.
https://doi.org/10.1109/TBME.2006.880879
https://doi.org/10.1109/ICNN.1995.488968.
https://doi.org/10.1109/TBME.2009.2013934
https://doi.org/10.1109/ICHI.2018.00092
https://doi.org/10.3390/mti2030047
https://doi.org/10.1109/TITB.2008.923147
https://doi.org/10.1016/j.cmpb.2014.01.014.
https://doi.org/10.1109/41.538609
https://doi.org/10.1109/MCI.2006.329691
https://doi.org/10.1007/978-3-540-72950-1_77
https://doi.org/10.5001/omj.2015.82


MFO-based Feature Selection for CVD    ◾    151

	 40.	 Valsecchi, A., Damas, S., & Santamaria, J. (eds.), An image registration 
approach using genetic algorithms. 2012 IEEE Congress on Evolutionary 
Computation (CEC). IEEE, Australia (2012).

	 41.	 Ling, S.S., & Nguyen, H.T., Genetic-algorithm-based multiple regression 
with fuzzy inference system for detection of nocturnal hypoglycemic epi-
sodes. IEEE Trans. Inf. Technol. Biomed., 15(2), 308–15 (2011).

	 42.	 Kumar, A., Ashok, A., & Ansari, M. A., Brain tumor classification using 
hybrid model of PSO and SVM classifier, 2018 International Conference 
on Advances in Computing, Communication Control and Networking 
(ICACCCN), pp. 1022–1026 (2018). DOI: 10.1109/ICACCCN.2018.8748787.

	 43.	 Jangir, N., Pandya, M.H., Trivedi, I.N., Bhesdadiya, R., Jangir, P., & Kumar, 
A., Moth-flame optimization algorithm for solving real challenging con-
strained engineering optimization problems. In 2016 IEEE Students’ 
Conference on Electrical, Electronics and Computer Science (SCEECS). IEEE, 
pp. 1–5 (2016).

	 44.	 Hazir, E., Erdinler, E.S., & Koc, K.H., Optimization of CNC cutting param-
eters using design of experiment (doe) and desirability function. J. For. Res., 
29(5), 1423–1434 (2018).

	 45.	 Wang, M., Chen, H., Yang, B., Zhao, X., Hu, L., Cai, Z., Huang, H., & Tong, 
C., Toward an optimal kernel extreme learning machine using a chaotic 
moth-flame optimization strategy with applications in medical diagnoses. 
Neurocomputing, 267, 69–84 (2017).

	 46.	 El Aziz, M.A., Ewees, A.A., & Hassanien, A.E., Whale optimization algo-
rithm and moth-flame optimization for multilevel thresholding image seg-
mentation. Expert. Syst. Appl., 83, 242–256 (2017).

	 47.	 Muangkote, N., Sunat, K., & Chiewchanwattana, S., Multilevel thresholding 
for satellite image segmentation with moth-flame based optimization. In 
2016 13th International Joint Conference on Computer Science and Software 
Engineering (JCSSE). IEEE, pp. 1–6 (2016).

	 48.	 Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., 
Karpathy, A., Khosla, A., Bernstein, M., & Berg, A. C., Imagenet large scale 
visual recognition challenge. Int. J. Comput. Vision, 115(3), 211–252 (2015).

	 49.	 Liu, S., & Deng, W., Very deep convolutional neural network-based image 
classification using small training sample size. In 2015 3rd IAPR Asian 
Conference on Pattern Recognition (ACPR), IEEE, Malaysia, pp. 730–734 
(2015).

	 50.	 Yu, S.-N., & Chou, K.-T., Selection of significant independent compo-
nents for ECG beat classification. Expert Syst. Appl., 36, 2088–2096 (2009). 
doi:10.1016/j.eswa.2007.12.016.

	 51.	 Yu, S.-N., & Chou, K.-T., Integration of independent component analysis 
and neural networks for ECG beat classification. Expert Syst. Appl., 34, 
2841–2846 (2008). doi: 10.1016/j.eswa.2007.05.006.

	 52.	 Wang, J.-S., Chiang, W.-C., Hsu, Y.-L., & Yang, Y.-T.C., ECG arrhyth-
mia classification using a probabilistic neural network with a feature 
reduction method. Neurocomputing, 116, 38–45 (2013). doi: 10.1016/j.
neucom.2011.10.045.

https://doi.org/10.1109/ICACCCN.2018.8748787
https://doi.org/10.1016/j.eswa.2007.12.016
https://doi.org/10.1016/j.eswa.2007.05.006
https://doi.org/10.1016/j.neucom.2011.10.045
https://doi.org/10.1016/j.neucom.2011.10.045
https://doi.org/10.1016/j.neucom.2011.10.045

	SECTION II Variants of Moth-Flame Optimization Algorithm
	CHAPTER 8 ◾ Moth-Flame Optimization-Based Deep
Feature Selection for Cardiovascular Disease
Detection Using ECG Signal
	8.1 Introduction
	8.2 Related Work
	8.3 Motivation
	8.4 Dataset Used
	8.4.1 Pre-Processing

	8.5 Methodology
	8.5.1 VGG16: A Brief Overview
	8.5.2 Moth-Flame Optimization

	8.6 Experimental Results and Discussion
	8.7 Conclusion
	References



